Learn Interfaces by Building an Equation Solver - Step 48

Tell us what’s happening:

The code is correct but does not work, tried resetting and refreshing and not statement but issue persists please help

Your code so far

from abc import ABC, abstractmethod
import re


class Equation(ABC):
    degree: int
  
    def __init__(self, *args):
        if (self.degree + 1) != len(args):
            raise TypeError(
                f"'Equation' object takes {self.degree + 1} positional arguments but {len(args)} were given"
            )
        if any(not isinstance(arg, (int, float)) for arg in args):
            raise TypeError("Coefficients must be of type 'int' or 'float'")
        if args[0] == 0:
            raise ValueError("Highest degree coefficient must be different from zero")
        self.coefficients = {(len(args) - n - 1): arg for n, arg in enumerate(args)}

    def __init_subclass__(cls):
        if not hasattr(cls, "degree"):
            raise AttributeError(
                f"Cannot create '{cls.__name__}' class: missing required attribute 'degree'"
            )

    def __str__(self):
        terms = []
        for n, coefficient in self.coefficients.items():
            if not coefficient:
                continue
            if n == 0:
                terms.append(f'{coefficient:+}')
            elif n == 1:
                terms.append(f'{coefficient:+}x')
            else:
                terms.append(f"{coefficient:+}x**{n}")
        equation_string = ' '.join(terms) + ' = 0'
        return re.sub(r"(?<!\d)1(?=x)", "", equation_string.strip("+"))        

    @abstractmethod
    def solve(self):
        pass
        
    @abstractmethod
    def analyze(self):
        pass
        
class LinearEquation(Equation):
    degree = 1
    
    def solve(self):
        a, b = self.coefficients.values()
        x = -b / a
        return [x]

    def analyze(self):
        slope, intercept = self.coefficients.values()
        return {'slope': slope, 'intercept': intercept}

class QuadraticEquation(Equation):
    degree = 2

    def __init__(self, *args):
        super().__init__(*args)
        a, b, c = self.coefficients.values()
        self.delta = b**2 - 4 * a * c

    def solve(self):
        if self.delta < 0:
            return []
        a, b, _ = self.coefficients.values()
        x1 = (-b + (self.delta) ** 0.5) / (2 * a)
        x2 = (-b - (self.delta) ** 0.5) / (2 * a)
        if self.delta == 0:
            return [x1]

        return [x1, x2]

    def analyze(self):
        a, b, c = self.coefficients.values()
        x = -b / (2 * a)
        y = a * x**2 + b * x + c
        if a > 0:
            concavity = 'upwards'
            min_max = 'min'
        else:
            concavity = 'downwards'
            min_max = 'max'
        return {'x': x, 'y': y, 'min_max': min_max, 'concavity': concavity}

# User Editable Region

def solver(equation):

    if  type(equation ) != Equation:
        raise TypeError('Argument must be an Equation object')

# User Editable Region

lin_eq = LinearEquation(2, 3)
quadr_eq = QuadraticEquation(1, 2, 1)

Your browser information:

User Agent is: Mozilla/5.0 (Linux; Android 10; K) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Mobile Safari/537.36

Challenge Information:

Learn Interfaces by Building an Equation Solver - Step 48

In other steps for this project you have used a specific function to check if an object is an instance of a certain class.

If you search the code you’ve created above you should be able to find it.