Tell us what’s happening:
Describe your issue in detail here.
it says do this, can someone please explain why it isn’t working:
Replace pass
with an if
statement that checks if the current node (node
) is not empty. Then, recursively call _inorder_traversal
with node.left
and result
as the arguments.
.
It says:
Sorry, your code does not pass. Hang in there.
Your check condition should be if node
.
Your code so far
class TreeNode:
def __init__(self, key):
self.key = key
self.left = None
self.right = None
class BinarySearchTree:
def __init__(self):
self.root = None
def insert(self,key):
self.root = self._insert(self.root, key)
def _insert(self, node, key):
if node is None:
return TreeNode(key)
if key < node.key:
node.left = self._insert(node.left, key)
elif key > node.key:
node.right = self._insert(node.right, key)
return node
def search(self, key):
return self._search(self.root, key)
def _search(self, node, key):
if node is None or node.key == key:
return node
if key < node.key:
return self._search(node.left, key)
return self._search(node.right, key)
def delete(self, key):
self.root = self._delete(self.root, key)
def _delete(self, node, key):
if node is None:
return node
if key < node.key:
node.left = self._delete(node.left, key)
elif key > node.key:
node.right = self._delete(node.right, key)
else:
if node.left is None:
return node.right
elif node.right is None:
return node.left
node.key = self._min_value(node.right)
node.right = self._delete(node.right, node.key)
return node
def _min_value(self, node):
while node.left is not None:
node = node.left
return node.key
def inorder_traversal(self):
result = []
self._inorder_traversal(self.root, result)
return result
# User Editable Region
def _inorder_traversal(self, node, result):
if node is not None:
self._inorder_traversal(node.left, result)
# User Editable Region
Your browser information:
User Agent is: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 OPR/105.0.0.0
Challenge Information:
Learn Tree Traversal by Building a Binary Search Tree - Step 49