Tell us what’s happening:
Describe your issue in detail here.
Your code so far
import pandas as pd
def calculate_demographic_data(print_data=True):
# Read data from file
df = pd.read_csv(“adult.data.csv”)
# How many of each race are represented in this dataset? This should be a Pandas series with race names as the index labels.
race_count = df['race'].value_counts()
# What is the average age of men?
average_age_men = round(df[df["sex"] == "male"]["age"].mean(),1)
# What is the percentage of people who have a Bachelor's degree?
len(df[df["education"] == "Bachelors"])
total_num = len(df)
percentage_bachelors = round(len(df[df['education'] == 'Bachelors']) / len(df) * 100, 1)
# What percentage of people with advanced education (`Bachelors`, `Masters`, or `Doctorate`) make more than 50K?
# What percentage of people without advanced education make more than 50K?
# with and without `Bachelors`, `Masters`, or `Doctorate`
higher_education = df[df["education"].isin(["bachelors","Masters","Doctorate"])]
lower_education = df[~df["education"].isin(["bachelors","Masters","Doctorate"])]
# percentage with salary >50K
non_percentage_higher = len(higher_education[higher_education.salary == ">50K"])
higher_education_rich = round(non_percentage_higher / len(higher_education)*100, 1)
non_percentage_lower = len(lower_education[lower_education.salary == ">50K"])
lower_education_rich = round(non_percentage_lower / len(lower_education)*100, 1)
# What is the minimum number of hours a person works per week (hours-per-week feature)?
min_work_hours = df['hours-per-week'].min()
# What percentage of the people who work the minimum number of hours per week have a salary of >50K?
num_min_workers = df[df['hours-per-week'] == min_work_hours]
rich_percentage = round(len(num_min_workers[num_min_workers.salary == ">50K"]) / len(num_min_workers)*100,1)
# What country has the highest percentage of people that earn >50K?
country_count = df['native-country'].value_counts()
country_rich_count = df[df['salary'] == '>50K']['native-country'].value_counts
highest_earning_country = (country_rich_count / country_count * 100).idxmax()
highest_earning_country_percentage = round((country_rich_count / country_count * 100).max(), 1)
# Identify the most popular occupation for those who earn >50K in India.
top_IN_occupation = None
# DO NOT MODIFY BELOW THIS LINE
if print_data:
print("Number of each race:\n", race_count)
print("Average age of men:", average_age_men)
print(f"Percentage with Bachelors degrees: {percentage_bachelors}%")
print(f"Percentage with higher education that earn >50K: {higher_education_rich}%")
print(f"Percentage without higher education that earn >50K: {lower_education_rich}%")
print(f"Min work time: {min_work_hours} hours/week")
print(f"Percentage of rich among those who work fewest hours: {rich_percentage}%")
print("Country with highest percentage of rich:", highest_earning_country)
print(f"Highest percentage of rich people in country: {highest_earning_country_percentage}%")
print("Top occupations in India:", top_IN_occupation)
return {
'race_count': race_count,
'average_age_men': average_age_men,
'percentage_bachelors': percentage_bachelors,
'higher_education_rich': higher_education_rich,
'lower_education_rich': lower_education_rich,
'min_work_hours': min_work_hours,
'rich_percentage': rich_percentage,
'highest_earning_country': highest_earning_country,
'highest_earning_country_percentage':
highest_earning_country_percentage,
'top_IN_occupation': top_IN_occupation
}
Your browser information:
User Agent is: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.69 Safari/537.36 Edg/95.0.1020.44
Challenge: Demographic Data Analyzer
Link to the challenge:
https://www.freecodecamp.org/learn/data-analysis-with-python/data-analysis-with-python-projects/demographic-data-analyzerPreformatted text