So if you see my question,
There is a list “dfList” which contains multiple dataframes. Each dataframe has 10 columns which stores data for a particular stock. I need to iterate through the dfList and for 3rd row of every dataframe , the Open price will be my buying price. Now will check in the rest of data for the particular data if there is decrease of 10% in the buying price or increase of 20% in the buying price , which willbe our selling price. I need to do this for all the stocks.
I tried this code.
for i in range(0,len(dfList)):
tempval = dfList[i].loc[2]['Open']
for j in range(0,len(dfList[i])):
if ((dfList[i].loc[j]['Open'] > (1.2 * tempval)) | (dfList[i].loc[j]['Open'] < (0.9 * tempval))):
print(dfList[i].loc[j])
break
but it is not working
This is how my dfList is
dfList[:2]
[ Event_index Date Open ... Volume Name Loss percent
0 1 2018-02-05 830.0 ... 1324579.0 TVIX 68.000000
1 1 2018-02-06 1489.0 ... 987706.0 TVIX -40.793651
2 1 2018-02-07 914.0 ... 683893.0 TVIX 21.849866
3 1 2018-02-08 924.0 ... 1122493.0 TVIX 48.514851
4 1 2018-02-09 1160.0 ... 949449.0 TVIX -16.296296
5 1 2018-02-12 1058.5 ... 545203.0 TVIX -7.876106
6 1 2018-02-13 1096.0 ... 325524.0 TVIX -0.288184
7 1 2018-02-14 1030.0 ... 432958.0 TVIX -21.772640
8 1 2018-02-15 756.0 ... 257326.0 TVIX -4.187192
9 1 2018-02-16 820.0 ... 398125.0 TVIX 2.185090
10 1 2018-02-20 847.0 ... 282795.0 TVIX 8.553459
11 1 2018-02-21 840.0 ... 312487.0 TVIX 2.201622
12 1 2018-02-22 834.0 ... 280997.0 TVIX -2.267574
13 1 2018-02-23 819.0 ... 295986.0 TVIX -14.617169
14 1 2018-02-26 698.0 ... 139378.0 TVIX -7.336957
15 1 2018-02-27 699.0 ... 390828.0 TVIX 16.568915
16 1 2018-02-28 750.0 ... 413212.0 TVIX 8.930818
17 1 2018-03-01 865.0 ... 687815.0 TVIX 14.434180
18 1 2018-03-02 1076.0 ... 672461.0 TVIX -8.678103
19 1 2018-03-05 937.0 ... 322371.0 TVIX -9.060773
20 1 2018-03-06 810.0 ... 305395.0 TVIX 1.579587
21 1 2018-03-07 900.0 ... 418296.0 TVIX -2.033493
22 1 2018-03-08 797.5 ... 340665.0 TVIX -6.471306
23 1 2018-03-09 741.0 ... 323610.0 TVIX -13.838120
24 1 2018-03-12 681.0 ... 178714.0 TVIX 6.060606
25 1 2018-03-13 681.0 ... 378357.0 TVIX 3.571429
26 1 2018-03-14 704.0 ... 387484.0 TVIX 3.862069
27 1 2018-03-15 733.0 ... 311277.0 TVIX -5.710491
28 1 2018-03-16 702.0 ... 255317.0 TVIX -3.098592
29 1 2018-03-19 716.0 ... 708294.0 TVIX 17.587209
30 1 2018-03-20 800.0 ... 321277.0 TVIX -4.079110
[31 rows x 10 columns],
Event_index Date Open ... Volume Name Loss percent
0 2 2018-02-23 28.799999 ... 3656.0 ABIO 3.225805
1 2 2018-02-26 13.500000 ... 580117.0 ABIO -71.874998
2 2 2018-02-27 9.540000 ... 459467.0 ABIO 42.222221
3 2 2018-02-28 11.700000 ... 776422.0 ABIO 26.562494
4 2 2018-03-01 16.200001 ... 255061.0 ABIO -11.111110
5 2 2018-03-02 12.960000 ... 95650.0 ABIO -4.166666
6 2 2018-03-05 12.600000 ... 86344.0 ABIO -1.449278
7 2 2018-03-06 12.420000 ... 64228.0 ABIO 0.000000
8 2 2018-03-07 12.420000 ... 49217.0 ABIO 0.000000
9 2 2018-03-08 12.060000 ... 59811.0 ABIO -8.823529
10 2 2018-03-09 11.520000 ... 54211.0 ABIO 4.838709
11 2 2018-03-12 11.700000 ... 32844.0 ABIO -3.076920
12 2 2018-03-13 11.340000 ... 22644.0 ABIO -3.174609
13 2 2018-03-14 10.980000 ... 102511.0 ABIO 16.393445
14 2 2018-03-15 12.960000 ... 44994.0 ABIO -7.042251
15 2 2018-03-16 11.700000 ... 18222.0 ABIO -1.515154
16 2 2018-03-19 11.880000 ... 62517.0 ABIO 0.000000
17 2 2018-03-20 11.880000 ... 63794.0 ABIO -4.615384
18 2 2018-03-21 11.160000 ... 59850.0 ABIO 0.000000
19 2 2018-03-22 11.340000 ... 20611.0 ABIO -1.612906
20 2 2018-03-23 10.980000 ... 62706.0 ABIO -9.836065
21 2 2018-03-26 9.900000 ... 56239.0 ABIO -7.272721
22 2 2018-03-27 9.540000 ... 58111.0 ABIO 1.960777
23 2 2018-03-28 9.180000 ... 29439.0 ABIO -5.769231
24 2 2018-03-29 9.000000 ... 14767.0 ABIO 2.040820
25 2 2018-04-02 9.000000 ... 39111.0 ABIO 3.999996
26 2 2018-04-03 9.540000 ... 15883.0 ABIO -5.769231
27 2 2018-04-04 9.000000 ... 15444.0 ABIO 2.040820
28 2 2018-04-05 9.000000 ... 13350.0 ABIO 2.000003
29 2 2018-04-06 9.360000 ... 13128.0 ABIO 0.000000
30 2 2018-04-09 9.360000 ... 7161.0 ABIO 0.000000
[31 rows x 10 columns]]