Learn Interfaces by Building an Equation Solver - Step 27

Tell us what’s happening:

i don’t know how to fit the intercept and slope into this, i get name error or atrribute error whenever i try to do so, this is the only time where i don’t get an error

Your code so far

from abc import ABC, abstractmethod

class Equation(ABC):
    degree: int
  
    def __init__(self, *args):
        if (self.degree + 1) != len(args):
            raise TypeError(
                f"'Equation' object takes {self.degree + 1} positional arguments but {len(args)} were given"
            )
        if any(not isinstance(arg, (int, float)) for arg in args):
            raise TypeError("Coefficients must be of type 'int' or 'float'")
        if args[0] == 0:
            raise ValueError("Highest degree coefficient must be different from zero")
        self.coefficients = {(len(args) - n - 1): arg for n, arg in enumerate(args)}

    def __init_subclass__(cls):
        if not hasattr(cls, "degree"):
            raise AttributeError(
                f"Cannot create '{cls.__name__}' class: missing required attribute 'degree'"
            )

    def __str__(self):
        terms = []
        for n, coefficient in self.coefficients.items():
            if not coefficient:
                continue
            if n == 0:
                terms.append(f'{coefficient:+}')
            elif n == 1:
                terms.append(f'{coefficient:+}x')                
        equation_string = ' '.join(terms) + ' = 0'
        return equation_string.strip('+')        
    
    @abstractmethod
    def solve(self):
        pass
        
    @abstractmethod
    def analyze(self):
        pass
        
class LinearEquation(Equation):
    degree = 1
    
    def solve(self):
        a, b = self.coefficients.values()
        x = -b / a
        return x

# User Editable Region

    def analyze(self):
        a,b = self.coefficients
        return self.coefficients.keys()

lin_eq = LinearEquation(2, 3)
print(lin_eq)
print(lin_eq.solve())
print(lin_eq.analyze())

# User Editable Region

Your browser information:

User Agent is: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36

Challenge Information:

Learn Interfaces by Building an Equation Solver - Step 27

  • Use the same method as in solve to get the values self.coefficients.values()

  • Store the two values returned in variables named slope and intercept

  • Return a dictionary with the keys named the same as the two values and the two values as the values (e.g. { 'name' : name, 'age': age }).

1 Like
from abc import ABC, abstractmethod

class Equation(ABC):
    degree: int
  
    def __init__(self, *args):
        if (self.degree + 1) != len(args):
            raise TypeError(
                f"'Equation' object takes {self.degree + 1} positional arguments but {len(args)} were given"
            )
        if any(not isinstance(arg, (int, float)) for arg in args):
            raise TypeError("Coefficients must be of type 'int' or 'float'")
        if args[0] == 0:
            raise ValueError("Highest degree coefficient must be different from zero")
        self.coefficients = {(len(args) - n - 1): arg for n, arg in enumerate(args)}

    def __init_subclass__(cls):
        if not hasattr(cls, "degree"):
            raise AttributeError(
                f"Cannot create '{cls.__name__}' class: missing required attribute 'degree'"
            )

    def __str__(self):
        terms = []
        for n, coefficient in self.coefficients.items():
            if not coefficient:
                continue
            if n == 0:
                terms.append(f'{coefficient:+}')
            elif n == 1:
                terms.append(f'{coefficient:+}x')                
        equation_string = ' '.join(terms) + ' = 0'
        return equation_string.strip('+')        
    
    @abstractmethod
    def solve(self):
        pass
        
    @abstractmethod
    def analyze(self):
        pass
        
class LinearEquation(Equation):
    degree = 1
    
    def solve(self):
        a, b = self.coefficients.values()
        x = -b / a
        return x
    def analyze(self):
        slope,intercept = self.coefficients.values()
        return {'slope': a, 'intercept': b}

lin_eq = LinearEquation(2, 3)
print(lin_eq)
print(lin_eq.solve())
print(lin_eq.analyze())

nvm done it, thanks man

also is it just me but these projects have got hard really quick