Tell us what’s happening:
The output on the console looks fine but the code is not passing to the next step I don’t know why!
Your code so far
from abc import ABC, abstractmethod
import re
class Equation(ABC):
degree: int
def __init__(self, *args):
if (self.degree + 1) != len(args):
raise TypeError(
f"'Equation' object takes {self.degree + 1} positional arguments but {len(args)} were given"
)
if any(not isinstance(arg, (int, float)) for arg in args):
raise TypeError("Coefficients must be of type 'int' or 'float'")
if args[0] == 0:
raise ValueError("Highest degree coefficient must be different from zero")
self.coefficients = {(len(args) - n - 1): arg for n, arg in enumerate(args)}
def __init_subclass__(cls):
if not hasattr(cls, "degree"):
raise AttributeError(
f"Cannot create '{cls.__name__}' class: missing required attribute 'degree'"
)
def __str__(self):
terms = []
for n, coefficient in self.coefficients.items():
if not coefficient:
continue
if n == 0:
terms.append(f'{coefficient:+}')
elif n == 1:
terms.append(f'{coefficient:+}x')
else:
terms.append(f"{coefficient:+}x**{n}")
equation_string = ' '.join(terms) + ' = 0'
# User Editable Region
return re.sub(r'1(?=x)', '', equation_string.strip('+'))
# User Editable Region
@abstractmethod
def solve(self):
pass
@abstractmethod
def analyze(self):
pass
class LinearEquation(Equation):
degree = 1
def solve(self):
a, b = self.coefficients.values()
x = -b / a
return x
def analyze(self):
slope, intercept = self.coefficients.values()
return {'slope': slope, 'intercept': intercept}
class QuadraticEquation(Equation):
degree = 2
def __init__(self, *args):
super().__init__(*args)
a, b, c = self.coefficients.values()
self.delta = b**2 - 4 * a * c
def solve(self):
pass
def analyze(self):
pass
lin_eq = LinearEquation(2, 3)
print(lin_eq)
quadr_eq = QuadraticEquation(11, -1, 1)
print(quadr_eq)
Your browser information:
User Agent is: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36
Challenge Information:
Learn Interfaces by Building an Equation Solver - Step 36